Pain and temperature encoding in the human thalamic somatic sensory nucleus (Ventral caudal): inhibition-related bursting evoked by somatic stimuli.
نویسندگان
چکیده
Stimulus-evoked inhibitory events have not been demonstrated in thalamic spike trains encoding of pain and temperature stimuli. We have now tested the hypothesis that the human thalamic response to mechanical and thermal stimuli is characterized by low-threshold calcium spike (LTS)-associated bursts of high-frequency action potentials preceded by prolonged inhibition. The results included 57 neurons recorded in the human thalamic principal somatic sensory nucleus (ventral caudal, Vc) of 24 patients during awake surgery. Neurons were classified by the grading of their response with stimulus intensity into the painful range (graded or non-graded) and the stimulus response (to mechanical, cold, or heat stimuli). Firing rates were analyzed by the response to all stimuli combined (stimuli overall) and to the stimulus characteristic of the stimulus response type (optimal stimulus), e.g., cold stimuli for neurons of the cold stimulus response type. All neuronal categories had clear stimulus-evoked LTS bursting as identified by the criteria for selecting bursts in the spike train, by significant preburst inhibition, and by preburst inter-spike interval not significantly <100 ms. Stimulus-evoked LTS burst rates were significantly higher for neurons in the cold stimulus response type independent of the firing rate between bursts. The parameters of preburst inhibition were largely independent of the neuronal category and the stimuli included in the analysis, which suggests inhibitory mechanisms are similar across neuronal types. Therefore LTS bursting is a substantial, nonlinear component of the spontaneous and stimulus-evoked activity of thalamic neurons in awake humans.
منابع مشابه
Neuronal responses to tactile stimuli and tactile sensations evoked by microstimulation in the human thalamic principal somatic sensory nucleus (ventral caudal).
The normal organization and plasticity of the cutaneous core of the thalamic principal somatosensory nucleus (ventral caudal, Vc) have been studied by single-neuron recordings and microstimulation in patients undergoing awake stereotactic operations for essential tremor (ET) without apparent somatic sensory abnormality and in patients with dystonia or chronic pain secondary to major nervous sys...
متن کاملHuman Thalamic Somatosensory Nucleus (Ventral Caudal, Vc) as a Locus for Stimulation by INPUTS from Tactile, Noxious and Thermal Sensors on an Active Prosthesis
The forebrain somatic sensory locus for input from sensors on the surface of an active prosthesis is an important component of the Brain Machine Interface. We now review the neuronal responses to controlled cutaneous stimuli and the sensations produced by Threshold Stimulation at Microampere current levels (TMIS) in such a locus, the human thalamic Ventral Caudal nucleus (Vc). The responses of ...
متن کاملA painful cutaneous laser stimulus evokes responses from single neurons in the human thalamic principal somatic sensory nucleus ventral caudal (Vc).
Cutaneous application of painful radiant heat laser pulses evokes potentials (laser-evoked potentials) that can be recorded from scalp or intracranial electrodes. We have now tested the hypothesis that the response of thalamic neurons to a cutaneous laser stimulus occurs at latencies predicted by the conduction delay between the periphery and the thalamus. We have carried out recordings from hu...
متن کاملMedial lateral extent of thermal and pain sensations evoked by microstimulation in somatic sensory nuclei of human thalamus.
We explored the region of human thalamic somatic sensory nucleus (ventral caudal, Vc) with threshold microstimulation during stereotactic procedures for the treatment of tremor (124 thalami, 116 patients). Warm sensations were evoked more frequently in the posterior region than in the core. Proportion of sites where microstimulation evoked cool and pain sensations was not different between the ...
متن کاملThe human thalamic somatic sensory nucleus [ventral caudal (Vc)] shows neuronal mechanoreceptor-like responses to optimal stimuli for peripheral mechanoreceptors.
Although the response of human cutaneous mechanoreceptors to controlled stimuli is well studied, it is not clear how these peripheral signals may be reflected in neuronal activity of the human CNS. We now test the hypothesis that individual neurons in the human thalamic principal somatic sensory nucleus [ventral caudal (Vc)] respond selectively to the optimal stimulus for one of the four mechan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 94 3 شماره
صفحات -
تاریخ انتشار 2005